
IPARP Table
IP global data structure

Wed, June 29, 1992

Every network node that supports Internet Protocol (IP)
communications maintains an ARP table to relate IP addresses to
hardware addresses. In the case of the local station’s IP support, it
also provides the “node#” that is used to reference that node (if it is a
front end data source), and the port#s in use by that node. A “pseudo
node#” is used to refer to a port of a node. It provides a functionality
similar to that of an internet socket. This note describes how the
IPARP table is used by the local station system to support IP .

Procedure InzIPARP;

At reset time, if no 'IP ' exists in the first word of the IPARP table,
which is system table#28, initialize the table and clear all entries;
otherwise, clear the port# block ptrs in all entries. Although IP
addresses are saved across resets, port# assignments for pseudo
node#s are not. If the table header includes a nonzero IP address and
netMask, then establish a ptr to the IPARP table in a system global
variable. Note that when the table is first established and all entries
are cleared, the header is also cleared. The local station’s IP address
and network mask must be entered manually and the system reset
again, in order to enable IP support. See installation section.

Function PsNIPARP(port: Integer; ipA: Longint; VAR netA: NetAddrType):

Integer;

This function is used when an IP (or ARP) datagram is received and
processed by the SNAP task. If it is a UDP datagram, the source port#
is specified in the call; otherwise, port#0 is used. The table is
searched for a match on the source IP address (or sender’s IP address
in the case of an ARP message), and the hardware address is updated
there. If it is not in the table, a new entry is added to the table to
hold this information. If there is no allocated port# block for the
entry, then one is allocated. For UDP, the port# is installed in the
port# block, if it is not already there. The returned value is the
pseudo node# that is used to reference the entry. The format of the
pseudo node# is chosen so that it does not conflict with node#s in
current use among accelerator nodes. This uniqueness is used to
denote that IP encapsulation is needed when sending the message on
the network, and by reference to the IPARP table entry, the
parameters of that encapsulation.The current form of the pseudo
node# is $6nnp, where nn is the table entry# in the range 2–255, and

IPARP Table July 12, 1996 page 2
range is 1–15.) In the case of an error, a zero is returned. The IPARP

table entry is 16 bytes as follows:

^IPPORTS

NODE#

IPADDR

NETADDR

Function GetIPARP(pNode: Integer; VAR port: Integer; VAR node: Integer;

VAR ipA: Longint; VAR netA: NetAddrType): Integer;

When a frame is due to be transmitted, and the frame header is
being built, this function retrieves the IP address, network address,
node# and port#, from the IPARP table entry specified by the pseudo
node#. These values are used to build the IP header and UDP header
of the datagram. The node# is used to replace the pseudo node# used
as the destination node field in the acnet header and classic protocol
cases.

Function IncIPARP(pNode: Integer): Integer;

Function DecIPARP(pNode: Integer): Integer;

For each port# registered in the port# block associated with a given
IP node, there is a use count. These two functions operate on the use
count pointed to by the given pseudo node#, which provides for
support of multiple requests from a given UDP source port. When a
data request is initialized, and a ptr to its request memory block is
inserted into the chain of active requests, IncIPARP is used to
advance the use count associated with the target port for the reply.
When the request is cancelled, and the request is removed from the
active chain, then DecIPARP is used to reduce the use count. In this
way, the available 15 port# slots associated with an IP node can be
reused as needed.

Function NodIPARP(pNode: Integer; node: Integer): Integer;

The concept of a node# word is used in both acnet and classic data
request protocols. At the time PsNIPARP is called by the SNAP task,
any node# specified in the message is unknown. When higher level
acnet protocol handling determines what the source node# is, then it
can use this function to update the node# word in the IPARP table
entry.

IPARP Table July 12, 1996 page 3

Procedure TimIPARP;

Every second, the QMonitor Task calls this routine to perform
timeout logic on IP communications. TimIPARP scans all active IPARP

entries and counts down the timeout word in the port# block header.
The timeout word is reset to a large value (currently 4000 seconds)
every time the port# block is referenced by PsNIPARP or GetIPARP

calls. Thus, when it reaches zero, it means no ports have been used
for a long time with that IP node, so the block is released.

With the implementation of fragmentation and reassembly,
additional timeout logic has been included in TimIPARP. When IP
fragments are received, they are timed out in case not all fragments
are received to make a complete datagram. Each time a fragment is
received that is part of a given datagram, a timeout count is reset to
a large value, which is currently 60 seconds. After that time, the
fragment blocks are released, and a “time exceeded” ICMP error
message is returned to the sending host.

When all IP fragments have been received for a given datagram, a
complete datagram is built and passed to the SNAP Task via its
message queue, just as if the entire datagram were received from the
network. The block containing the complete datagram is timed out in
case its associated message counter is not reduced to zero. (The
message count word should be decremented by every program or
task when it is finished processing the message; this can be done
automatically by NetRead, NetRecv, UDPRead, UDPRecv, or by Classic
Task processing, depending on the protocol used.) The current value
for timing out completed datagram blocks that are unused is 60
seconds. Normally, the datagram block is released within one second
after the message count word is reduced to zero by the next call to
TimIPARP.

Function FrgIPARP(pNode: Integer; dIdent: Integer;

fragPtr: FBlkPtr; VAR dgPtr: DgPtrType); Integer;

This routine is called by the SNAP Task to handle IP fragment
processing. The pNode parameter is the pseudo node# returned from
a call to PsNIPARP. The dIdent is the identification field from the
fragment IP header that identifies the datagram of which it is only a
fragment. The fragPtr argument is a ptr to a fragment block that
holds a copy of the received fragment. The dgPtr variable is set to a

IPARP Table July 12, 1996 page 4
ptr to the completed datagram block in the case that this fragment
makes the datagram complete. See the document Fragmentation and
Reassembly for more details on this.

The IPARP table header format is as follows:

IPADDRS

DEFGATE

NETMASK

MTULOC MTUEXT

The local station IP address must be entered into the table manually.
Since IPARP is in non-volatile memory, it should not thereafter need
to be changed. In addition, the subnet mask is kept there and an IP
address of the optional default gateway. When a datagram is to be
sent to an IP address destination for which there is no known
hardware address,, a check is made using the local station IP address
and the subnet mask to determine whether the target IP node is on
the same subnetwork. If it is, then an ARP request message is sent to
obtain the hardware address. If it is not, then the default gateway IP
address is used to look up the gateway’s hardware address. (If there
is none as yet, an ARP request is sent to obtain it.) The message is
then sent to the gateway’s hardware address.

At the time this is written, when an ARP request must be sent, the
datagram to be sent to the target node is discarded. Since the IPARP

table entries are not timed out, this is not expected to be a problem.
If it is, then a means of queuing up, and timing out, datagrams
awaiting ARP responses must be found. With no means of timing out
IPARP entries, it is possible for stale information to accumulate there.
If a node changes its hardware address, for example, and it is on the
same subnet as the local station, then the table entry would have to
be manually cleared for that IP node. Again, if this causes problems,
we may have to implement a time out for the IPARP table entries.
Both this timeout and the queuing of datagrams awaiting ARP

responses should probably be implemented at the same time.

It is hoped that 254 table entries, which means 254 IP addresses,
will be enough for the local stations to keep track of. If it is not, then
this would be another reason to implement a timeout on the IPARP

table entries.

With no timeout of IPARP table entries, it is still ok for a station to
change its hardware address, if that station sends a request to the

IPARP Table July 12, 1996 page 5
local station. The hardware address used in the request message will
update the IPARP table entry for that same IP address. If the change
is in the IP address, a new entry will be automatically added to the
table. If an IPARP table entry is cleared manually, the entry will be
available for re-use.

Installation
When installing IP support for the first time, install the table #28

as 256 entries of 16 bytes each in the system table directory. After
reset, the table will be initialized, but no IP address will be in its
header. Install the IP address, subnet mask, and the default gateway
address. Reset again. One other important item: install the SAP table
entry#2 as $AA, or no SNAP (IP) frames can be received!

